X-ray Microscopic Examination of the Coffee Roasting Process

Figure 1: Photograph of beans moving from unroasted, to medium roast, to dark roast 

Roasting coffee beans causes meaningful changes in their microstructure, such as the increase in total pore volume, porosity, and density due to the rupture of bonds in the internal structure of the coffee beans during roasting. These changes affect the stability as well the grinding and brewing performances, and ultimately the taste. 

From Harvesting through Roasting

The harvesting of coffee cherries begins the process of developing coffee beans for use. After harvesting, the samples are brought down to 11% moisture and milled to remove the cherry husk from the bean. After sorting for size and quality, these green coffee beans are then exported worldwide for further processing1. While many are familiar with the flavor and aroma of roasted coffee beans, green beans are less commonly encountered in public. These beans, while similar in shape to the beans you will find on the shelf, have a vastly different flavor and texture than what would be expected from a finished coffee bean. The roasting process converting these green coffee beans to a finished product is critical for flavor development. 

During roasting, coffee beans are rapidly heated in specialized roasters, which causes the loss of moisture from the beans and the development of flavors through the Maillard reaction. Once beans reach around 400F, beans begin to change in color and the fragrant oil caffeol begins to release through the process of pyrolysis1. The longer beans are left in the roaster, the more intense flavors will be developed.   

Traditional examination of the physical properties of coffee beans relies on light microscopy, electron microscopy, and mercury porosimetry2. Micro-CT is highly suited for food and beverage product development and quality control due to its non-destructive quantitative view within samples at atmospheric temperature and pressure with no complicated sample preparation required. In this work, we examined replicate samples at three time points during the roasting process from a single batch of Guatemalan coffee beans. We examined the unroasted green beans, a medium roast set of beans, and a dark roast set of beans to explore the physical changes occurring during the roasting process. 

X-Ray Microscopy Imaging of Coffee Beans

For our article this month, we chose to focus on imaging four samples extracted at three time points from a single lot of Guatemalan coffee during the roasting process using the SkyScan 1272 high-resolution desktop micro-CT. As can be seen from the view in Figure 1 above, obvious physical changes are observed based on the surface appearance of the beans. However, micro-CT examination allows for the qualitative and quantitative comparison of internal features and structures without compromising sample integrity.  

Figure 2: Planar 2D and rendered 3D views of a green coffee bean

As shown in Figure 2, green coffee beans generally have a low porosity and a high water content. We can also see a region of lower density within the bean near one of the ends. This low density band within the bean likely represents the previous connection path between the bean and the stem from the tree on which the coffee cherry originally grew. The natural shape of the bean is a curled c-type shape with a large open void present through the central axis of the bean. 

Figure 3: Planar 2D and rendered 3D views of a medium roast coffee bean

When comparing the medium roast beans to the unroasted, drastic physical changes are observed within the sample (Figure 3). Most notably, a sharp increase in porosity is observed throughout the structure and larger voids are starting to develop. 

Figure 4: Planar 2D and rendered 3D views of a dark roast coffee bean

When comparing the dark roast beans to the medium roasted beans, the changes are less obvious (Figure 4). The overall porosity appears relatively similar from a qualitative view, though the cracks that began to form in the medium roast sample are now larger and more pronounced.  

Figure 5: Planar 2D and rendered 3D high resolution views of a dark roast coffee bean

While the images we have examined so far were all captured at standard resolution on the SkyScan 1272, there is room for improvement in resolving the pores by switching to the highest resolution imaging mode (Figure 5). The increased resolution allows for a finer representation of the small pores that developed during the roasting process. 

Figure 6: Quantitative pore maps (red) overlaid on green (top) and dark roast (bottom) imaging data

Using our CTAn software, the pores within each bean sample were measured quantitatively during a volumetric analysis and the resulting pores were mapped in red and overlaid upon the original image data (Figure 6). These views are particularly helpful in examining the drastic increase in porosity arising from the roasting process within the beans. 

Relevant morphometric parameters for each sample calculated within CTAn were compiled and presented in Table 1.

 GreenMedium Dark 
Bean volume140.6620.30133.7217.62170.8417.74mm3
Bean surface area570.5872.546537.491117.907545.891961.91mm2
Bean surface / volume ratio4.080.4048.803.9543.667.611/mm
Average pore diameter186.3057.2881.956.29105.0520.82um
Total porosity (percent)8.072.0928.381.7626.303.38%

Table 1: Morphometric parameters from the quantitative analysis of coffee beans

Visually we observe the green beans to have low porosity, so it is reasonable to believe the average of 8 percent porosity we observe for this sample is based primarily on the large open channel present within the folded structure of the bean. The medium and dark roasted beans both show an approximate four-fold increase in porosity. Interestingly, the porosity does not change with statistical significance between the medium and dark roast timepoints. As the porosity of the beans increases during the roasting process, so does the surface area to volume ratio, as the volume remains relatively unchanged while the presence of pores increases the surface area. As with porosity, no significant differences were observed between the medium and dark roast time points. 


The SkyScan 1272 allowed us to non-destructively compare samples of Guatemalan coffee beans sampled through the roasting process. This examination detailed the nearly four-fold increase in porosity arising from the roasting process. This comparison highlighted several key differences internal to the sample and not visible upon external examination. We hope you found this Image of the Month informative and encourage you to subscribe to our newsletter and social media channels in preparation for the continuation of our image of the month series next month. 

Scan Specifications

SampleStandard ResolutionMaximum Resolution
Voltage (kV)5050
Current (µA)120120
Pixel Size (µm)84
Rotation Step0.250.15
Scan Time (HH:MM:SS)01:35:37 x 5 connected scans05:02:48

These scans were completed on our desktop SkyScan 1272 system at the Micro Photonics Imaging Laboratory in Allentown, PA. Reconstructions were completed using NRecon and visualization of 2D and 3D results were completed using DataViewer, CTVox, and CTAn. 

Coffee samples were kindly collected in collaboration with Liberty Beans Coffee Company (https://libertybeanscoffee.com/) located in Cherry Hill, NJ. Details on the batch are listed below. 

Asociacion de Productores de Café Diferenciados y Especiales de Guatemala (ASPROCDEGUA)

Farm: About 394 organic-certified members of ASPROCDEGUA
Altitude: 1600-2200 masl
Region:  Cuilco, Colotenango, Santa Barbara, San Sebastian, Huehuetenango, Sipacapa, San Antonio Huista, Union Cantinil, San Pedro Necta, Todos Santos, Concepcion Huista, San Marcos
Varietals: Caturra, Catuai, Pache
General Cup: Clean, sweet, smooth and citric with praline pecan flavor
Process: Fully Washed

Would you like your work to be featured in our monthly newsletter? If so, please contact us by calling Seth Hogg at 610-366-7103 or e-mailing seth.hogg@microphotonics.com


  1. https://www.ncausa.org/About-Coffee/Coffee-Roasts-Guide
  2. Karen J. Cloete, Žiga Šmit, Roya Minnis-Ndimba, Primož Vavpetič, Anton du Plessis, Stephan G. le Roux, Primož Pelicon, Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission, Food Chemistry: X, Volume 2, 2019, 100032, ISSN 2590-1575, https://doi.org/10.1016/j.fochx.2019.100032.

Related Products

Related Articles

US Partner Form

    Coming Soon:

    Customer access to tips and instructional videos, method notes, tutorials, application notes, and other content to support your research.


    Service Engineer opening for Micro-CT Systems

    We are looking for a service engineer to join our team of experts in helping advance research by providing technical support and maintenance for micro-CT systems across the United States.

    Please submit resumes to: info@microphotonics.com

    Micro Photonics Inc.
    1550 Pond Road, STE 110
    Allentown, PA 18104



    WVC Annual Conference

    Las Vegas, NV
    February 19-21
    Booth 1484

    Privacy Policy

    What information do we collect? We collect information from you when you register on our site, place an order, subscribe to our newsletter or fill out a form. When ordering or registering on our site, as appropriate, you may be asked to enter your: name, e-mail address, mailing address, phone number or credit card information. You may, however, visit our site anonymously.
    What do we use your information for? Any of the information we collect from you may be used in one of the following ways:

    ; To personalize your experience (your information helps us to better respond to your individual needs).

    ; To improve customer service (your information helps us to more effectively respond to your customer service requests and support needs).

    ; To process transactions. Your information, whether public or private, will not be sold, exchanged, transferred, or given to any other company for any reason whatsoever, without your consent, other than for the express purpose of delivering the purchased product or service requested.

    ; To send periodic emails .The email address you provide for order processing, will only be used to send you information and updates pertaining to your order.Note: If at any time you would like to unsubscribe from receiving future emails, we include detailed unsubscribe instructions at the bottom of each email.

    Terms and Conditions

    Terms of Service for www.microphotonics.com

    Introduction. Welcome to www.microphotonics.com. This website is owned and operated by Micro Photonics Inc. By visiting our website and accessing the information, resources, services, products, and tools we provide, you understand and agree to accept and adhere to the following terms and conditions as stated in this policy (hereafter referred to as ‘User Agreement’), along with the terms and conditions as stated in our Privacy Policy (please refer to the Privacy Policy section below for more information).

    This agreement is in effect as of October 25, 2018.

    We reserve the right to change this User Agreement from time to time without notice. You acknowledge and agree that it is your responsibility to review this User Agreement periodically to familiarize yourself with any modifications. Your continued use of this site after such modifications will constitute acknowledgment and agreement of the modified terms and conditions.

    Responsible Use and Conduct. By visiting our website and accessing the information, resources, services, products, and tools we provide for you, either directly or indirectly (hereafter referred to as ‘Resources’), you agree to use these Resources only for the purposes intended as permitted by (a) the terms of this User Agreement, (b) the terms of any applicable confidentiality, non-disclosure, or other agreement between you and a third party, and (c) applicable laws, regulations and generally accepted online practices or guidelines.

    Call Now Button