Micro-CT Inspection of Yeast-Leavened Pizza Dough

Figure 1: Volumetric rendering of yeast dough sample

Density in bread and other porous foods is difficult to measure accurately, with true, apparent, and bulk being different types of densities based on how volume is measured. Predicting food density based on composition and processing conditions allows researchers to fill gaps in nutrient databases and account for new foods. Utilizing our Bruker SkyScan 1275 micro-CT scanner, which is specially designed for 3D high-speed imaging, we monitored the rise in a sample of bread dough with repeated scans every 20 minutes to measure changes in porosity over time.

X-Ray Microscopy Imaging of a Dough Ball

We imaged a ball of yeast-leavened pizza dough using the SkyScan 1275 desktop micro-CT. As can be seen from the view in Figure 1 above, the high-speed acquisition modes within the SkyScan 1275 allowed us to complete scans of the sample in under four minutes. With the speed of the SkyScan 1275 we were able to image the sample using 20 minute intervals to monitor the changes in dough porosity and pore size distribution over time as the yeast continued to produce more carbon dioxide gas within the dough. Using our volumetric analysis software, CTAn, we quantified these changes in both porosity and average pore diameter within the sample as the dough continued to rise in the instrument chamber. 

This image has an empty alt attribute; its file name is 1220B.jpg
This image has an empty alt attribute; its file name is 1220C.jpg

Figure 2: Planar views of reconstructed data from the dough sample at the imaging start (top) and conclusion (bottom)

As shown in Figure 2, the dough rose outside our standard field of view used for the scan during the 80 minutes the sample was within the instrument. We can identify the dense dough ball at the start of imaging contained within the plastic housing with several large pores but overall a low porosity. After 80 minutes of proofing, the volume is significantly increased and while some large pores remain, many new, smaller pores are now present accounting for the rise in total volume of the dough. 

This image has an empty alt attribute; its file name is 1220D.jpg
This image has an empty alt attribute; its file name is 1220E.jpg

Figure 3: Clipped volumetric renderings of dough showing porosity at imaging start (top) and conclusion (bottom)

Since we wanted to make use of the ability to repeat scan settings for sequential samples, we also utilized the Push Button operation mode of the SkyScan 1275. After initially setting up our study and scanning parameters, we simply needed to push the button on the front of the instrument to repeat the image acquisition process under the same conditions at each timepoint. As we saw with the 2D image slices, we also observe the same large increase in porosity and sample volume when viewing the reconstructed 3D results (Figure 3).

This image has an empty alt attribute; its file name is 1220F.jpg
This image has an empty alt attribute; its file name is 1220G.jpg

Figure 4: Clipped volumetric renderings of dough showing only pores colored by diameter at imaging start (top) and conclusion (bottom)

The pore size distribution and average pore diameters were calculated for all time points utilizing CTAn and the results can be visualized in 3D as a color-coded representation of the pores themselves from within the time point data (Figure 4). This image is the converse of Figure 3, in that we are viewing only the pores within the dough rather than any structural information from the dough itself. The visualization of the pores confirms our earlier observations that at the start of imaging the dough was compressed and low in porosity while after 80 minutes the dough shifted to a high porosity with most of the sample volume arising from new pores.

Figure 5: Calculated porosity at each timepoint within the field of view

The quantitative data within Figure 5 confirms our observations as well. The porosity increases from around 14% at the start of imaging all the way to above 80% at the conclusion of imaging.

Figure 6: Calculated pore size distribution at each timepoint within the field of view

Figure 6 provides data showing that during our imaging study the size distribution for the sample broadened slightly and increased in average pore diameter. These data also are in line with our observations, both visually within the 3D renderings and quantitatively with the total porosity for each sample.


The SkyScan 1275 allowed us to quickly capture structural volumetric data for a piece of dough as it continued to rise within the instrument chamber by making full use of the high-speed imaging modes. With a standard micro-CT, the dough would be moving too much due to the rising process to capture meaningful data. Some motion artifacts are present in these datasets even with the high-speed imaging modes as the dough is constantly in motion. However, the artifacts are minor overall and volumetric data can still be quantified from this sample time series. We hope you found this Image of the Month informative and encourage you to subscribe to our newsletter and social media channels in preparation for the continuation of our image of the month series next month.

Scan Specifications

Sample Yeast Dough
Voltage (kV) 80
Current (µA) 100
Pixel Size (µm) 70
Rotation Step 0.4
Scan Time (HH:MM:SS) 00:03:34

These scans were completed on our high-speed desktop SkyScan 1275 system at the Micro Photonics Imaging Laboratory in Allentown, PA. Reconstructions were completed using NRecon while visualization and volumetric analysis of the 2D and 3D results were completed using Dataviewer, CTVox, and CTAn.

Would you like your work to be featured in our monthly newsletter? If so, please contact us by calling Seth Hogg at 610-366-7103 or e-mailing seth.hogg@microphotonics.com.

Related Products

Related Articles

US Partner Form

    Coming Soon:

    Customer access to tips and instructional videos, method notes, tutorials, application notes, and other content to support your research.


    Service Engineer opening for Micro-CT Systems

    We are looking for a service engineer to join our team of experts in helping advance research by providing technical support and maintenance for micro-CT systems across the United States.

    Please submit resumes to: info@microphotonics.com

    Micro Photonics Inc.
    1550 Pond Road, STE 110
    Allentown, PA 18104



    WVC Annual Conference

    Las Vegas, NV
    February 19-21
    Booth 1484

    Privacy Policy

    What information do we collect? We collect information from you when you register on our site, place an order, subscribe to our newsletter or fill out a form. When ordering or registering on our site, as appropriate, you may be asked to enter your: name, e-mail address, mailing address, phone number or credit card information. You may, however, visit our site anonymously.
    What do we use your information for? Any of the information we collect from you may be used in one of the following ways:

    ; To personalize your experience (your information helps us to better respond to your individual needs).

    ; To improve customer service (your information helps us to more effectively respond to your customer service requests and support needs).

    ; To process transactions. Your information, whether public or private, will not be sold, exchanged, transferred, or given to any other company for any reason whatsoever, without your consent, other than for the express purpose of delivering the purchased product or service requested.

    ; To send periodic emails .The email address you provide for order processing, will only be used to send you information and updates pertaining to your order.Note: If at any time you would like to unsubscribe from receiving future emails, we include detailed unsubscribe instructions at the bottom of each email.

    Terms and Conditions

    Terms of Service for www.microphotonics.com

    Introduction. Welcome to www.microphotonics.com. This website is owned and operated by Micro Photonics Inc. By visiting our website and accessing the information, resources, services, products, and tools we provide, you understand and agree to accept and adhere to the following terms and conditions as stated in this policy (hereafter referred to as ‘User Agreement’), along with the terms and conditions as stated in our Privacy Policy (please refer to the Privacy Policy section below for more information).

    This agreement is in effect as of October 25, 2018.

    We reserve the right to change this User Agreement from time to time without notice. You acknowledge and agree that it is your responsibility to review this User Agreement periodically to familiarize yourself with any modifications. Your continued use of this site after such modifications will constitute acknowledgment and agreement of the modified terms and conditions.

    Responsible Use and Conduct. By visiting our website and accessing the information, resources, services, products, and tools we provide for you, either directly or indirectly (hereafter referred to as ‘Resources’), you agree to use these Resources only for the purposes intended as permitted by (a) the terms of this User Agreement, (b) the terms of any applicable confidentiality, non-disclosure, or other agreement between you and a third party, and (c) applicable laws, regulations and generally accepted online practices or guidelines.

    Call Now Button